svIDS: A Hidden Markov Models Intrusion
Detection System

Timothy Sakharov and Oleg Vaskevich

Northeastern University, Boston MA 02115, USA,
{sakharov.t,vaskevich.o}@husky.neu.edu

Abstract. In this paper we propose and describe svIDS, an implemen-
tation of an intrusion detection system and enforcer based on Hidden
Markov Models. The HMM is trained in an unsupervised manner, and
then employed by an enforcer daemon to flag potentially malicious sys-
tem operations. While there is a miscellany of metrics that could be used
to characterize a program, SVIDS currently models file open system calls,
and determines that a set of recent operations of a program is suspicious
if the file accesses are deemed to have a low likelihood by the trained
model. If some threshold of suspicion is met, SVIDS’s enforcer interdicts
the program-under-watch and notifies administrators as necessary.

Keywords: hidden Markov models, intrusion detection system

Table of Contents

[L.1 Project development|...................
[L22 Motivation and example USE CaS€|. . ..o vvveeeeeeeeeeeeeeean.
|2 Prerequisite concepts|.

N OO OO O =W WWwNh NN

1 Introduction

Cybercrime costs the global economy $500 billion dollars a year [I]. Of all the
various types of cybercrime, malware and unauthorized intrusion are particularly
damaging. For instance, the Mydoom worm of 2004 single-handedly caused over
$38 billion dollars of damage. Unauthorized access to systems is perhaps even
more deleterious. Just two months ago, Kasperksy Labs uncovered a hacking ring
that stole over $1 billion from the US through access to ATMs and other banking
systems [2]. For this reason, we have chosen to explore malware detection and
intrusion detection systems in our Algorithms and Data class project, as well
as familiarize ourselves with state-of-the-art Bayesian network algorithms and
other pertinent machine learning paradigms.

1.1 Project development

Initially, we aimed to apply these algorithms for the purpose of malware detec-
tion, but due to the nature of malware with respect to its diversity, we decided
to change our focus to intrusion detection by modeling the normal behavior of
a specific software program and detecting anomalies.

1.2 Motivation and example use case

The following example is used here and in our implementation as a sample use
case and to demonstrate the use of svIDS.

Suppose you own a company that provides high-performance com-
puting services to clients, and there is a control panel using a native
Linux binary that can only be run off one management node. Each cus-
tomer has their own user account on this machine, and you design a
tool that lets customers query various information, such as the quota or
billing amount, as well as change various account settings.

This sensitive data is located on the same machine, but you obviously
want to restrict access to it such that only the administrator can make
changes (such as increasing the quota) and users can only see their own
information. As a result, you place all the data files into a directory
accessible only to the root (0) user, and in your tool you set up setuid (0)
so that the tool runs with administrator privileges.

The problem is that, with each coming week, your company devel-
opers keep adding various features to the tool. You're worried that they
might introduce a vulnerability into the tool, allowing users to see oth-
ers’ sensitive account information or, worse, modify their own quota and
use up all your resources.

Luckily, you have access to sVIDS. You start by creating a .svids
file with all the expected normal inputs to your program, and svIDS
records the expected observations. Later on, when your program is ac-
tually running, SVIDS uses HMMs in order to monitor activity of every

invocation of the tool. If something looks suspicious—for instance, if the
tool is accessing certain directories more often than it should or ones
it seldom does (the admin directory with all the secret settings)—then
SsVIDS can interdict and terminate the tool, and notify you and the
administrators immediately that something fishy is going on.

While this example is a bit contrived, the main idea is that sVIDS is de-
signed to provide an out-of-the-box intrusion detection system and, should it be
developed further, become more sound and precise with regards to being able to
detect compromises.

The main assumption behind sSvIDS, shared by other state-of-the-art sys-
tems such as kBouncer [3], is that any malicious activity performed must make
use of system calls, which can be monitored via strace (more on that in
Fection 2.1)

While there are many different Linux system calls that can be modeled,
sVIDS currently models the open syscall. As a result, the system is currently
designed to detect unlikely directory or file access in a Linux environment. It is
particularly helpful when attempting to prevent unauthorized program access to
a secure, root-level directory.

For example, if there is software running on a shared system where different
user accounts store data that should only be accessible by that user or an admin-
istrator, a vulnerability in the software may cause data in a secure directory to be
compromised. In order to prevent this, SVIDS requires the creation of a .svids
file with all the expected normal inputs to a given program. sVIDS records the
expected observations and trains itself on known-good behavior. Later on, when
the program is actually running, SVIDS operates a real-time “enforcer” that
monitors the operations of the program. If something looks suspicious because
it’s not within the expectations of the model—for instance, some software is
accessing directories more often than it should or ones it seldom does (such as
the admin directory)—then SVIDS can interdict and terminate the program,
and then immediately notify the administrators of potential intrusion into the
monitored system.

2 Prerequisite concepts

2.1 Markov models

A Markov model is a stochastic model used to describe some system with the
Markov property that a future state depends only on the present state, as op-
posed to all the events that preceded it. In particular, it is a system of states
with defined probabilities of transitioning from one state to another.

2.2 Hidden Markov models

A hidden Markov model has the same underlying idea as a regular Markov model,
but with the notion that the state of the system is hidden, and can only be

observed through certain emissions. These emissions are probabilistic, and thus
an HMM is an instance of a simple dynamic Bayesian network.

In a hidden Markov model, we define a single, discrete state variable X4,
where t € Zg indicates the entire state of a system at a certain time ¢. Note that
t need not be represented in a particular unit of time, and can simply be used
to indicate a sequence of events.

There are S states and E observations or emissions. Furthermore, X, has
states

Lly..+, LS

We define the transmission model
T =Pr(X¢| Xe-1)
as an S x S matrix, such that
T, =Pr(X, =7,Xi-1=1)

We also define a sensor or emission model O; as a set of £ x E matrices, where
O; € O represents the likelihood of each emission. Finally, we define m; as the
initial probabilities of being in state i. An example of an HMM is shown in

N~ 00

T T2 €3

- Ou(on)

PR OERTRVIRTY

01 02

Fig.1. An HMM with 3 states, each of which emits observations 01,02 € O;. T; ; is
the probability to transition from state z; to state z;, and Og(x;) is the probability of
state x; emitting og.

While HMMs are useful in modeling various systems, they are most powerful
when used in tandem with such algorithms as the Baum-Welch and Viterbi
algorithms [4].

2.3 Viterbi algorithm

The Viterbi algorithm is used to find the most likely sequence of hidden states
based on observations, known as the Viterbi path. It is defined by the recurrence

[\

relation
Vi,x = Pr(On|zg) - ma), where z; € X5
V;E,k = maXzecXx, (PT(Otll‘t) 'Ta:,:vk- : Vvtfl,index(Xt,x))

The time complexity of this algorithm is O(tS?). We can determine the
Viterbi path by saving pointers to x at each invocation of V.

2.4 strace and ltrace

strace and ltrace are two Unix utilities that can be used to observe the system
calls and library method calls that a given program makes, respectively. Although
it is possible to use these utilities to observe a currently running program, it is
typical to invoke them as follows.

strace —f <program> <args>

The result may look as follows:

read (4, 77, 8192) =0
close (4) =0
munmap (0xb770d000, 4096) =0

3 Materials and Methods

svIDS is written in a combination of Python 2.7 and Bash.

3.1 Data Representation

We represent our HMM as a JSON object containing a transition matrix, emis-

sions map, and initial probability map—encoded as transitionmatrix, emissions,

and initprob, respectively. The transition matrix is the two-dimensional array
that represents the probabilities of state transitions. The emissions JSON map,
or dictionary, maps a state to its emission. In our case, this is a bijective, one-
to-one mapping, as each state has only a single emission with probability of
one. This simplification allows for some optimizations in the training algorithm
without having too great an impact on its robustness.

This could, however, easily be expanded to account for probabilistic emissions
by changing the structure to a one-to-many mapping and modifying the forward-
backward procedure in the update_model.py program. The emissions represent
the subdirectories extracted from the strace input, such as ‘home’ or ‘etc’.
The initial probabilities object maps each state to the probability of starting
in that state. In the case of both emissions and initprob, the state keys are
represented as string forms of integers, such as ‘2’ to indicate State 2, due to the
constraints of JSON. This is handled by the scripts to ensure that conversion to
and from JSON maintains the representational integrity of the model.

3.2 Code Implementation

The source code for the sVvIDS project, freely available under Apache License
2.0 on GitHukﬂ, is divided into three main categories: the trainer, the enforcer,
and an example.

Trainer The trainer consists of a Python script and a shell script wrapper.
This code parses an SVIDS file containing a terminal command and arguments.
It then records the system calls of strace being run on the given program.
These are in turn used to train the Hidden Markov Model by updating the
transition matrix, initial probability object, and emissions object as necessary.
The program handles the creation and initialization of a new model, revision of
existing model entries, and the addition of new emission data if needed. When
a given emission is observed repeatedly, the transition matrix for that column
(entering into that state) is updated with an increased probability. The initial
probabilities work in a similar fashion. Probabilities are smoothed to prevent
zero-probability paths through the states.

Enforcer The enforcer uses the trained HMM to analyze a stream of system
calls and determine whether the current program execution is suspicious. It does
so by finding the probability of the path through the hidden states that is most
likely to produce the given emissions (system calls). If the probability of this path
is below some predefined threshold, the enforcer will attempt to terminate the
program and display a message with relevant information. We have constructed
a skeleton for the enforcer program, as the implementation may vary depending
on the desired actions taken when a low-probability system call is detected. Since
our underlying Hidden Markov Model is encoded in JSON, the components of our
system that utilize it, such as the enforcer, are easily adaptable and modifiable.

Example The example portion of the project provides a C program that at-
tempts to exploit a system by accessing directories as a root user. This example
can be used to train the svIDS system, or alternatively as an evaluation method
to determine whether a trained system is able to detect an intrusion.

Note that, due to time constraints with regards to developing the enforcer, the
example code itself is currently incomplete. That being said, it is commented in
places where more work is needed, and contriving the rest of the example should
be relatively straightforward.

For this reason, we have used the 1s example also present in this directory,
in order to verify that our trainer works as expected.

4 Results

The out-1s.hmm file located in our source code in svids/trainer/ is the result
of running the trainer on the 1s Linux command; note that this is in standard

! nttps://github.com/ovaskevich/svids

https://github.com/ovaskevich/svids

JSON format. The file contains the subdirectories that the trainer encountered
(encoded in the emissions matrix), the initial probabilities for the states, and the
transition matrix. The system call being trained in this case is the open syscall,
so the emitted text in the arguments of the call is that of the directory structure.
The advantage of a system like SVIDS is that there is no need to provide complex
definitions for possibly intrusive software behavior. Instead, even a simple Linux
command can be used to provide a baseline, although binaries closer to those
used by a particular program will increase accuracy. As long as the trainer is
provided with ample data that represents benign program execution, it will be
able to determine whether some newly encountered system call seems to be
intrusive.

5 Conclusion and Possibilities for Future Work

Overall, the Hidden Markov Model behind sVIDS provides an expandable and
robust solution for intrusion detection in a Linux environment. Although the
enforcer is not yet fully implemented, and we currently only model one type of
system call, it can easily be written for a specific application of svIDS. The
nature of this project was a proof-of-concept: we examined the viability of an
HMM for detecting suspicious software behavior. The unsupervised training is
perhaps the greatest strength of this approach; the signatures of various intrusion
attempts need not to be known. Even in the simple case of using the 1s command
to train the model, it was still able to meaningfully determine a number of benign
directories and subdirectories. If given adversarial code, the model would be able
to determine that its emissions have a low probability, and therefore flag them
as suspicious.

5.1 Future work

svIDS also has plenty of room for future work. Outside the implementation
of the enforcer, the system could incorporate some notion of structure for the
system calls themselves. Currently, the model only looks at individual system
calls from the strace output, one at a time, and implements the model for a
subset of these. Future work could interpret system calls differently based on
their sequence in the input as a digram; for instance, a call to read followed by
a call to write would affect the HMM differently from a read followed by an
execve. Another possible expansion would be to incorporate state merging to
allow for more nuanced state structure [4].

Bibliography

[1] M. Egan, “Report: Cyber Crime Costs Global Economy Up to $500B a Year,”
Fox Business, 2013.

[2] F. News, “Hacking ring has stolen up to $1 billion from US, European banks,
report says,” Fox News, 2015.

[3] V. Pappas, “kBouncer: Efficient and Transparent ROP Mitigation,” 2012.

[4] A. Stolcke and S. Omohundro, “Hidden Markov model induction by Bayesian
model merging,” Advances in neural information processing systems, pp. 11—

11, 1993.

	svIDS: A Hidden Markov Models Intrusion Detection System
	Introduction
	Project development
	Motivation and example use case

	Prerequisite concepts
	Markov models
	Hidden Markov models
	Viterbi algorithm
	strace and ltrace

	Materials and Methods
	Data Representation
	Code Implementation

	Results
	Conclusion and Possibilities for Future Work
	Future work

