
On Assaying the Parallelism of Neural Network
Algorithms
Final Report

EECE 5640, Prof. Leeser

Samuel Sussman, Oleg Vaskevich

April 29, 2015

Project description

Our project dealt with improving the perfor-
mance of Google’s cuda-convnet2 convolu-
tional neural networks (CNN) framework by
applying the various types of parallelism that
we have learned in this class. cuda-convnet2
is written in C++/CUDA, and is decently
complicated, containing tens of thousands of
lines of code. Its implementation as well as
the mechanisms of its contributions are thor-
oughly described in [1].

In order to measure the performance of
cuda-convnet2, we used a subset of the
LSVRC-2012 dataset, available from Ima-
geNet. At a high level, there are two main
components within cuda-convnet2: the data
generation code, and the neural network
training code. Initially, we looked into
parallelizing the latter; indeed, we got in
touch with the original author, Dr. Alex
Krizhevsky of Google, in order to see where
we can make improvements. However, we
noted that since this part of the framework
was already written in CUDA, our exposure
to parallelization mechanisms would essen-
tially be limited to just MPI.

As a result, we looked into the data gener-

ation portion of the framework. This sequen-
tial code was written in Python, although
it did include a library written in C++ that
used native threads for some basic paralleliza-
tion. This dearth of parallelization provided
for a great segue into the motives behind
this project, and allowed us to explore MPI,
OpenMP, and CUDA simultaneously. Fur-
thermore, focusing on this part of the frame-
work allowed us to aim our efforts at high-
performance computing and not at under-
standing the inner machinations of CNNs.

In particular, we explored methods of
speeding up the processing the initial raw
dataset—a brobdingnagian 140 GB tar
image—into batches of JPEG images that
can be parsed by the CNN trainer. We thus
set on our path by implementing MPI for par-
allelizing the Python data generation code,
and further improved the code’s performance
by rewriting some parts using OpenMP as
well as using CUDA. Although the data-
generation code was I/O heavy—having to
process copious amounts of data—our results
were promising and we were able to observe
general performance improvements as a result
of our modifications.



Sequential code

The original sequential code is available on-
line1, licensed by Google under Apache Li-
cense 2.0. We started with this code and
modified it in order to run on the Discov-
ery cluster, which was complicated due to
the various library requirements and prereq-
uisites. In particular, we had to address the
following issues:

• We had to load the appropriate modules
(python, cuda, atlas, opencv) as well
as set the appropriate include and linker
paths;

• The Python 2.7 module was built using
position-dependent code that isn’t com-
patible with this library. We resorted to
using the system-available Python 2.6 li-
brary that was correctly compiled with
-fPIC;

• The version of libjpeg available on the
system, v6, was incompatible with the
library, resulting in compilation errors.
We added v8 of the library source into
our repo; and

• There were issues with building because
the correct OpenCV headers weren?t be-
ing included; we modified the appropri-
ate files.

Working with Dr. Nilay Roy, we also had
to install the Pillow Python module on the
Discovery Cluster, as well as ascertain that
we can use the /scratch folder for storing
our data and other intermediate files.

Since we had decided to focus on the data
generation portion of the code, it was help-
ful to know what this sequential code was
doing. We found out that essentially, the

1https://code.google.com/p/cuda-convnet2

Python code goes through every sub-tarfile
in the original dataset, locates each of the
images, shuffles them into random batches,
resizes the images using a native C++ library
(using OpenCV libraries for the image oper-
ations and pthreads internally for some par-
allelization), and then pickles—writes the bi-
nary representation of—the images to disk.
Clearly, this code is still processing-intensive,
and could be improved through paralleliza-
tion.

In order to test the runtime of the code, we
had to modify our data set to make it more
feasible to test. This is because processing of
the entire 140 GB dataset took several hours,
which is not conducive to performance test-
ing for our project, and also is profligate in re-
gards to usage of the Discovery cluster. Luck-
ily, since this tarfile itself contained a miscel-
lany of smaller tarfiles, we were able to re-
move all but one, and were left with an 8 GB
dataset, much easier to test. Coupled with
the other 7 GB validation image dataset, we
were down to processing about 15 GB of data.
We will discuss the performance later, but
processing this data using the original code
took 257.4 s on the Discovery cluster.

Parallelism

Although we spent a good chunk of time an-
alyzing the C++ code for training the neural
network, parallelizing it required at least a
thorough understanding of convolutional neu-
ral networks, and we haven?t gotten to the
part where we understand them well enough
to see how we could parallelize them. The
code is already written in CUDA, and from
our analysis of the CUDA code, there aren’t
really any improvements we can make with
regards to optimizations such as shared code
and tiling: the authors of the original code

https://code.google.com/p/cuda-convnet2


seem to know what they’re doing.

MPI

We started out by implementing the data-
generation portion of the code with MPI. In
order to generate the training batches from
the raw data, the code takes a .tar file con-
taining many .tar files of JPEG images of
varying sizes, and extracts and resizes the
images to 256 × 256 pixels. Since this pro-
cess takes several hours on the sample data,
we added support for MPI using mpi4py to
speed up batch data generation. In particu-
lar, for our implementation we broke up the
extraction onto different nodes in the cluster
and rewrote the randomization and shuffling
code to work around the issue of file handles
being distributed across different nodes.

With respect to programmability, the
mpi4py bindings were decently easy for us to
use, and very similar to the C++ framework
that we are all familiar with. However, we
ran into a few snafus, and the most difficult
part was synchronizing the status of each in-
dividual node of processing its individual set
of images into a global percentage that the
user can see; we ended up commenting this
code out.

With regards to portability, the framework
as a whole is not portable. This is because
we had to perform a lot of changes in order to
get cuda-convnet2 to run on the Discovery
cluster, and there may be changes required in
order to run the framework on other systems.
That being said, the data generation portion
is decently portable. This is because mpi4py
is readily available and easily installed.

With regards to performance, MPI pro-
vides a significant gain because it lets us
use several nodes simultaneously for compu-
tation. By leveraging the resources of multi-
ple machines on the Discovery cluster, we can

significantly increase throughput.

OpenMP

Having completed the parallelization of the
Python code with MPI, we next looked into
what we could do about the C++ library that
it loads to perform image processing resiz-
ing. The original code used an abstraction of
pthreads—using 8 threads in particular—and
we were interested in seeing how OpenMP
would allow us to improve performance by
letting us tweak the number easily, as well as
make the code more maintainable. Of course,
OpenMP is internally based on pthreads,
anyway, but it did result in significantly de-
creasing code complexity.

With regards to programmability, OpenMP
was fairly easy to use, since we really just had
one for loop here. We did have to be careful
notate critical code where needed.

With regards to portability, the same con-
cerns as the ones for MPI are present here,
but again, the ubiquity of OpenMP makes
this code fairly portable.

With regards to performance, OpenMP lets
us easily change the number of threads on
each run of the program via environment vari-
ables, and we can empirically run the code to
determine the best number of threads with
which to run it.

CUDA

With MPI and OpenMP code behind us, we
decided to look into using CUDA for the na-
tive C++ portion of the data-generation code.
We noted that the most processing-intensive
part of this code was decoding the image, re-
sizing and cropping it, and writing it back to
disk. That being said, this functionality was
not explicitly implemented in the code, as it
was using the OpenCV libraries. Luckily, the



OpenCV libraries provide a way of running
resize with CUDA. We had to make sure to
upload the decoded image onto the GPU, if
there was one available on the system, con-
ditionally call the GPU version of resize,
and then download the resized image from
the GPU.

Since the CUDA code was based off the
OpenMP code, we were also able to run
our CUDA code with a varying amount of
OpenMP threads on the appropriate queue.

Testing

Instructions for running the code are avail-
able in the README.md file in the ZIP file or
on our public GitHub repository.2. Note that
initially we started by having four separate
branches: one for the original code modi-
fied to run sequentially on the Discovery clus-
ter; one for the the code with mpi4py imple-
mented; and the remaining two for OpenMP
and CUDA implementations on top of the for-
mer. However, we were able to combine these
all into one branch.

This way, we can run the code with differ-
ent behaviors as follows:

• To run the code sequentially, simply
modify the Discovery Cluster Bash file
to set the number of nodes n and ptile
both to 1, set NUM WORKER THREADS in
make-data.py to 8 (as was the default),
and run on a non-GPU queue. Note
that the original pthreads implementa-
tion was erased, but it should be trivial
to merge the original code in and add a
conditional flag to run the original ver-
sion of needed.

2https://github.com/ovaskevich/

convnet-nu-discovery

• To run the code with MPI, set n and
ptile as desired, modify make-data.py

as described above, and run on a non-
GPU queue.

• To run the code with OpenMP, run
as above, but vary the value of
NUM WORKER THREADS in make-data.py

as desired. Run on a non-GPU queue.

• To run the code with CUDA, set
NUM WORKER THREADS in make-data.py

to 1 and run on a GPU queue like
par-gpu. The code now automatically
detects GPU availability and runs oper-
ations on the GPU. You can also modify
NUM WORKER THREADS as desired.

In order to time the code, we used Python’s
native timing API. We simply measured the
time at the beginning of program execution
and at the end, and printed out the difference
to standard output.

Furthermore, we wrote a test harness in
Bash in order to run the code with vary-
ing numbers of nodes (BSUB -n), ptile and
OpenMP threads, across multiple trials, as
well as to extract this information into a text
file. Since this tends to take a long time, we
initially added a call to the Plivo SMS service
in order for us to get text messages on our
phones once the runs have completed. How-
ever, we couldn’t use it because we found out
that we had to run the Bash script on an in-
teractive node, which doesn’t have an inter-
net connection.

Note that in practice, for unknown reasons
some jobs ended up getting stuck and as a re-
sult, the Bash script didn’t work too well with
recording a lot of data. Jobs would also ran-
domly fail, only to succeed when run again.
We investigated, and this did not seem like an
issue with our code. As a result, we ended up

https://github.com/ovaskevich/convnet-nu-discovery
https://github.com/ovaskevich/convnet-nu-discovery


collecting less data for various combinations
of n and ptile.

Results

Upon modifying the code to use a MPI,
OpenMP, and/or CUDA, we ran the same
data with varying combinations of processes,
ptile values, number of threads, and GPU
support. The raw results are available in the
tables in Appendix A.

The first trial we tried was running the se-
quential code under one MPI process, using
the original pthreads implementation instead
of OpenMP. We observed a speedup of 0.89—
in other words, the MPI implementation was
a bit slower than the original implementation.
This is most likely due to the overhead added
by using MPI; at the same time, this effect
is quickly mitigated by the benefits of using
parallelism with MPI.

Indeed, in the best case scenario, with 32
processes spread out among 4 nodes, the par-
allel code achieved a speedup of about 4.4.
Even in the worst parallel case—2 processes
spread out among 2 nodes—we saw a speedup
of about 1.12.

As soon as we added in OpenMP to the
portion of the code that resized the images,
we saw even more improvement. When the
OpenMP code ran with more than 1 thread,
it ran faster than MPI alone. The speedup
provided by OpenMP peaked at around 10
threads, fluctuating only slightly. In the best
case scenario—32 processes spread out among
4 nodes using 1024 OpenMP threads—we
achieved speedup of around 6.9. A graph il-
lustrating these observations is shown in Fig-
ure 1.

We also experimented with running our
GPU/CUDA implementation of the C++

make-data module. With a single-processor

Figure 1: A graph comparing performance
with MPI. The different colors represent the
number of processors or nodes (number of
processors divided by ptile).

execution, performance was similar to that
observed with the same MPI setup. When
we tried to use more than 1 OpenMP thread,
though, performance quickly began to de-
grade. For instance, for n = 16 and ptile =
16, we recorded a time of 243.08 s with 32
OpenMP threads, and a time of 120.06 s with
16 OpenMP threads. This is likely due to the
over head of uploading and downloading im-
ages to the GPU, when the actual resize oper-
ation is rather trivial. We found that running
with with more processes resulted in better
performance; unfortunately, the GPU queue
was seldom not at full capacity, and we were
limited in extracting measurements.

Conclusions

Our work for incorporating the various forms
of parallelization that we learned in this class
into a mature, sophisticated CNN frame-
work proved most useful to augmenting our
confidence in being able to apply high-
performance computing techniques to even
the most complex projects. By working with
production code written in C++, CUDA and
Python, we were able to learn how to apply



the various frameworks in such a heteroge-
neous system, as well as learn how to use
mpi4py, the Python bindings for MPI. If we
had more time and expertise, we would look
into parallelizing the neural network training
portion of the framework. That being said,
we were pleasantly surprised to see that our
modifications, had a decent impact on the
performance of the code.

Future work

Further work for improving the performance
of cuda-convnet2 on the Discovery Cluster
lies in implementing MPI within the neural
network code in order to take advantage of
multiple GPUs across different nodes. This
is due in part to the differences in the ar-
chitecture used originally and the Discovery
Cluster; the authors of the framework simply
use one machine with many GPUs installed,
whereas the nodes on the Discovery Cluster
only have one GPU per node installed.

References

[1] Krizhevsky, Alex, Ilya Sutskever, and Ge-
offrey E. Hinton. “ImageNet Classifica-
tion with Deep Convolutional Neural Net-
works.” (n.d.): n. pag. Blackboard, EECE
5640. University of Toronto. Web. 1 Feb.
2015.



A Appendix A

Processes Processors Average Time
32 4 46.45333333

2 75.91333333
1 80.385

16 4 59.5
2 78.34
1 105.44

8 4 71.15
2 109.28
1 133

4 4 83.55
2 91.47
1 80

2 2 182.79
1 126.66

1 1 231.4

Table 1: Raw data for the MPI code. Average time was computed based on the average over
1 to 3 (depending on how many failed) trials.



Processes Processors OpenMP Threads Average Time
32 4 1 78.3

2 39.98
4 34.78
5 33.49
8 31.46
10 37.07
16 31.92
20 32.85
30 32.23
32 31.5
64 36.52
256 29.895
1024 29.84

32 2 1 73.12
2 55.1
4 51.055
5 47.88
8 46.88
10 49.39
16 49.78
20 49.86
30 50.05
32 51.545
64 48.34
256 49.35
1024 49.83

Table 2: Raw data for the OpenMP code. Average time was computed based on the average
over 1 to 3 (depending on how many failed) trials.

Processes Processors Time (s)
16 1 104.17

2 184.14
4 126.66

32 1 Out of memory
2 160.15
4 114.87

Table 3: Raw data for the CUDA code.


	Appendix A

