
The Bewildering, Bizarre BilliardBot
Project Report

CS 4100/5100: Artificial Intelligence
Prof. Margot Lhommet

Paranoid Androids (Xingchen Cui, Alex Hersh, David Pimentel, Oleg Vaskevich)

April 23, 2014

Project Overview

Initially for our final Donjon project, we proposed BilliardBot, a software simulation and an
artificially intelligent billiard (pool) playing robot. The requirements of this emulated robot were
that it had to be able to observe the pool table and calculate the most optimal shot on each move,
and that several bots can be instantiated in order to compete against each other at the same pool
table.

We developed BilliardBot from scratch using JavaScript and the 2-D graphics library Matter.JS.
Using various mathematical algorithms, an instance of the BilliardBot AI can calculate the most
optimal move by judging the quality of each class of its available shots and, if any, the opponent’s
expected gain from the resulting ball positions. The software simulation itself is an easily-accessible
website viewable in modern browsers, and displays a pool table in a graphical user interface, showing
the tables state as well as each shot taken in real-time. This AI provides options for three different
types of games: Single AI, in which the robot simply tries to finish the game as fast as possible;
Double AI, in which two robots play against each other, using expectimax to make decisions, and
Tests, which provides a unit and integration testing framework.

While the notion of an AI for billiard was not unheard of, it was also not nearly as ubiquitous
as in other games, such as Pac-Man. We planned to approach the problem from an unbiased and
academic position, and there were certainly many challenges to address. While visual appeal and
aesthetics were among be the least important goals of our project, the hardest parts to tackle within
the projects short period were the physics portions and the strategy given our platform of choice.
That being said, we were surprised to have made great progress and have something to show at
the end of these few weeks.

Technical Description

Physics

Matter.js, a combined rendering and physics engine for JavaScript applications, served as the back-
bone for our project. Many of the decisions we made throughout the process were made with our
physics engine in mind.

1



Billiards is a game that can be simulated relatively accurately, as it is a game of precise actions
and specifically defined components. It is a continuous game, but it is as calculable as continuous
games get. That said, a perfect -or even great- simulation is quite the undertaking. For the scope
of this project, we condensed the physical components of the game to fit within the scope and focus
of our Artificial Intelligence project.

We opted for strictly 2D environment. This decreased the number of physical variables to keep
track of, while still allowing us to closely model ball movement. The downside to this, though,
is that we could not model many techniques that involve decisions in 3D space (e.g., hopping,
backspin).

While the physics engine we chose, Matter.js, proved more than competent in calculating 2D
physics, we did encounter some limitations that affected our product. Matter.js makes calculations
in discrete time, meaning that at every tick, things are moved, collisions are detected, and forces are
applied. However, when you are simulating a game that usually runs on continuous time, you run
into some issues. When two balls collide, the angle at which they reflect is dependent upon their
point of contact. In discrete time, this point of contact may be passed over between ticks, resulting
in late collision detection and unpredictable final resting states. We tried to limit the effect of this
by limiting speed and decreasing the time-scale, but ultimately these kind of collision errors were
inevitable and had to be treated as a stochastic variable. We had also made significant-enough
progress at this point that switching to another physics engine was not feasible.

GUI

Our Graphical User Interface, defined in gui.js, is fairly straightforward. Since Matter.js has
a built in renderer, physical Bodies can be calculated and drawn fairly easily. Since we did not
implement human player mechanics to the simulation, the UI was fairly simple. Our screen consists
of the table, turn indicators, scoring, and some simple game options. We represent solid balls with
a solid color and a black outline, and striped balls as white balls with colored outlines.

Our GUI class also acts as a means of communication between the Game Logic and the Physics
blocks. The GUI has listeners that will alert Game Logic that the balls have reached equilibrium,
allowing the next player to take her turn. We also put hooks into the gui for adding or removing
balls as necessary.

Game Logic

Our Game Logic block, defined in gamelogic.js, holds all the rules, game states, player coordina-
tion, and win/loss conditions. In its current state, it is optimized for American Pool, but can be
adjusted to fit other billiards game types with a moderate amount of effort.

AI Agent

At its core, our AI Agent, defined in ai.js, uses an expectimax algorithm to determine the best
possible shot—taking into account both its own utility and the opponent’s utility of the cue ball’s
final resting place.

This AI Agent very much depends on prediction of future state, which proved quite the technical
challenge in our framework. Due the size and architecture of Matter.js, we could not find a way to
efficiently and rapidly use it to preserve, copy, and simulate an entire world-state for an indefinite

2



amount of time and iterations. As a result, we chose to use less robust, but less CPU intensive,
solution. Instead of remodeling the entire system, we focus on the interaction of the cue, target
ball, and pocket, and ignored all other ball interactions. To compensate for this oversight, we use
ray casting to determine whether or not an interaction will occur, and updated our cost function
appropriately.

We calculate shot vectors by first picking a target ball and a pocket. To calculate the initial
velocity required to propel that ball into the pocket, we use a kinematic equation

Vi = (friction × distance)/massball

From this velocity, we do a bit of geometric and kinematic manipulation to determine the cue ball’s
required direction and speed. This kinematic calculation is our substitute for direct simulation.
Note that we do not actually invoke the physics engine in this calculation, so any calculation we
do only emulates those executed by the engine at runtime. This error will propagate down the
expectimax tree, so we will rely on the probability constants to take into account the accuracy of
our predictions.

Within our expectimax implementation, we enumerate the best possible shot for each of the
agent’s balls on the table. For each one of these shots, we create a child node representing a
successful shot (the ball was sunk) and a failure shot (the shot was missed). Each child node
updates its table configuration accordingly, moving the cue ball to where we expect it to end up.
For successful child nodes the current agent shoots again, and for failure nodes the the expectimax
algorithm switches to the opponents perspective. When calculating the score of each shot, we
multiply the value of each shot by the probability that it will happen. We calculate probability
based on the angle of the shot, i.e. the more straight on the shot is, the higher the probability it will
go in. Our evaluation function simply counted the number and type of balls on the table. A good
state has a smaller number of the player’s ball on the table, and a higher number of the opponent’s
balls on the table. In our implementation, we run expectimax with a depth of 2 (looking ahead 2
shots). Since our estimation of future nodes is fairly inexact, we did not want to explore too deep
into the expectimax tree.

Validation

In order to facilitate test-driven development as well as be able to troubleshoot specific issues and
have a way to track regressions in our code, we needed to develop a framework for testing. Since
our code was a web app written with JavaScript, we needed some way of making assertions on the
results of the game.

In particular, we wanted to be able to have a command-line utility that we could invoke to run
our tests. Typically to achieve this in the industry, something known as a headless browser is used,
and PhantomJS is a prime example. PhantomJS lets developers load a web page into memory
- without a browser actually being visible - and perform operations with it. In order to perform
the actual testing assertions, we decided to use CasperJS for its ease of use and JUnit-like testing
framework.

We started out by creating a tests directory for our tests. Each test has its own HTML file.
Using RequireJS, we can modify the prototypes of any functions we define in order to write the
test; for instance, in single ai 8ball.html, we override the GUI.prototype.setupRack function
in order to only add a single 8-ball at a specified location.

3



Within the tests directory, there is also a file called run.js as well as another subdirectory
with test-related code. This file can be run with CasperJS by invoking casperjs test run.js.
In run.js, we then perform an assertion that the AI pockets the ball within 60 seconds, and watch for
any run-time errors as well. Game end state is indicated by augmenting the GUI.prototype.endGame
function using the helper function TestUtils.notifyOnEndGame to append a gameEnded element
to the document once the game ends; run.js is then able to check if the document contains this
element to know if it should stop.

Results

Was it a success?

Our AI Agent has succeeded in reaching our goal of completing a game of pool, but it is far
from optimal. Subjectively, our expectimax algorithm seems to choose optimal shots. However, it
appears that only about 30% of the attempted shots manage to pocket a ball, making for games that
span about 30 shots. The problem is probably the result of collision detection issues mixed with
our ideal kinematic predictor. Still this is promising, and with a better state prediction scheme,
the expectimax algorithm has potential.

As for this rest of the project, we were able to construct a good-looking pool table as well
as implement the foundation for the validation and testing framework. While we didnt have the
luxury of time to implement many test cases, the validation framework works as it should. Indeed,
if we wanted to, we could integrate it so that all the tests run on every commit to the repository,
ensuring that we do not break anything as we perform further development.

Complications and Management

We initially allocated a week to set up our UI and Physics engine. We chose to pursue a Python
environment powered by Pygame, but by the end of that week we could not get a version that
worked for every member of the group, nor could we decipher much of the documentation. We
made the decision to use JavaScript with Matter.js and after some refactoring, we were able to
continue work on the AI Agent. The changes to our timetable are detailed as follows:

• April 11 to 15 - Working Physics, Game Logic, and GUI Display

• April 17 to 19 - Basic AI Agent Logic

• April 20 to 21 - Optimize and Validate AI

• April 23 - Deliverable Product

The performance of each block of our system is definitely correlated to the time attributed to
them. While our product looks beautiful, our AI does not quite live up to our expectations and,
although the validation framework is complete, the set of tests performed is limited.

We approximated distributed effort as follows:

4



Alex Dave Oleg Xingchen

Physics/GUI 20% 40% 20% 20%
Logic 30% 30% 15% 25%
AI 20% 60% 10% 10%
Validation 5% 5% 85% 5%

Table 1: Work Distribution

Extensions

With ample time, the first improvement to be made would probably be more robust state prediction.
This would make our AI Agent a much more formidable opponent. There are also a few tricks we
wanted to implement to make banking and chain-shots more effective. For example, table-mirroring
allows you to easily find perfect vectors for banking the cue off of a wall. From there, we could add
in human interaction and possibly more gametypes.

With unlimited resources, our AI algorithm could potentially be adapted to power an au-
tonomous pool playing robot. Swapping out the GUI/Physics Engine for a robotic interface could
allow the AI to grab state information from sensor data and make decisions that are translated
into articulated movements.

5


